如何把N,N-二甲基甲酰胺和二氯乙醇混合成一个浓度

数智人2023-12-06产业百科89
这个,首先看它的官能团 1、分子式为分子式HCON(CH3)2,所以为酰胺.酰胺是一种很弱的碱,它可与强酸形成加合物,如CH3CONH2·HCl,很不稳定,遇水即完全水解.酰胺也可形成金属盐,多数金属盐遇水即全部水解,但汞盐(CH3CONH)2Hg则相当稳定.酰胺乙氧酰胺苯甲酯在强酸强碱存在下长时间加热,可水解成羧酸和氨(或胺).酰胺在脱水剂五氧化二磷存在下小心加热,即转变成腈.酰胺经催化氢化或与氢化铝锂反应,可还原成胺.酰胺还可与次卤酸盐发生反应,生成少一个碳原子的一级胺. 酰胺可以通过羧酸铵盐的部分失水,或从酰卤、酸酐、酯的氨解来制取;腈也可部分水解,停止在酰胺阶段. 低分子液态酰胺如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺是优良的非质子极性溶剂,也可用作增塑剂、润滑油添加剂和有机合成试剂.长链脂肪酸酰胺,如硬脂酸酰胺可作纤维织物的防水剂,芥酸酰胺是聚乙烯、聚丙烯挤塑时的润滑剂.N,N-二羟乙基长链脂肪酸酰胺是非离子型表面活性剂,也是氯乙烯-乙酸乙烯酯共聚物的增塑剂.N-磺烷基取代的长链脂肪酸酰胺是合成纤维的柔软剂.二元羧酸与二元胺缩合聚合形成的聚酰胺是具有优异性能的合成纤维. 肉桂酰胺酸碱性:酰胺一般是近中性的化合物,但在一定条件下可表现出弱酸或弱碱性.酰胺是氨或胺的酰基衍生物,分子中有氨基或烃氨基,但其碱性比氨或胺要弱得多.酰胺碱性很弱,是由于分子中氨基氮上的未共用电子对与羰基的π电子形成共轭体系,使氮上的电子云密度降低,因而接受质子的能力减弱.这时C-N键出现一定程度的双键性. 然而,氮上的电子云密度降低,却使N-H键的极性增加,从而表现出微弱的酸性.如果氨分子中有两个氢原子被一个二元酸的酰基取代,则生成环状的亚氨基化合物(酰亚胺).由于两个羰基的吸电子作用,使亚氨基的N-H键极性明显增加,氮上的氢原子较易变为质子,而呈弱酸性.例如:水酰胺在通常情况下较难水解.在酸或碱的存在下加热时,则可加速反应,但比羧酸酯的水解慢得多. N-取代酰胺同样可以进行水解,生成羧酸和胺. 与亚硝酸反应:酰胺与亚硝酸作用生成相应的羧酸,并放出氮气. 特别的,N,N-二甲基甲酰胺(DMF)是一种透明液体,能和水及大部分有机溶剂互溶.它是化学反应的常用溶剂.纯二甲基甲酰胺是没有气味的,但工业级或变质的二甲基甲酰胺则有鱼腥味,因其含有二甲基胺的不纯物.名称来源是由于它是甲酰胺(甲酸的酰胺)的二甲基取代物,而二个甲基都位于N(氮)原子上.二甲基甲酰胺是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行. 二甲基甲酰胺是利用蚁酸和二甲基胺制造的.二甲基甲酰胺在强碱如氢氧化钠或强酸如盐酸或硫酸的存在下是不稳定的(尤其在高温下),并水解为蚁酸与二甲基胺. 2、由于有羰基,所以一定条件下可以发生以下反应缩合与α-氢羟醛在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮.这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation).通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链. 羟醛缩合反应历程,以乙醛为例说明如下:第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子). 第三步,烷氧负离子与水作用得到羟醛和OH. 稀酸也能使醛生成羟醛,但反应历程不同.酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛. 生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛. 凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水.这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定. 除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛.羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链. 具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物.一般需要在比较特殊的条件下进行反应.例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低.如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%.二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮. 在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合.如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值.一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应.并且产物种类减少,可以主要得到一种缩合产物,产率也较高.反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留.在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物.芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应.在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合.另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应. 卤代烃基上的反应由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮. 这类反应可以被酸或碱催化.用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物. 决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关. 生成的一卤代物继续与卤素反应的速度降低.这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行.所以酸催化卤代反应常停止在一卤代产物上. 碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关. 用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段.这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因. 凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物.而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐.因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction).由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮.因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应. 如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应. 因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇.《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇. 甲基酮的卤仿反应是制备羧酸的一个途径.另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸. 羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应.与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心.一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性.因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应.一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上.所以,羰基的典型反应是亲核加成反应. 加成与氢氰酸(1)与氢氰酸的加成醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇). 羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一.羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体.例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸. 丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯.甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃. 醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行.为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇. 与格氏试剂(2)与格氏试剂的加成在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似.由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇. 格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇.但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物.另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃.在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离.有机锂化合物和醛、酮反应的方式和与格氏试剂相似.例如和醛、酮反应,则分别得到仲醇或叔醇.与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主.由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应.一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败. 与醇 (3)与醇的加成常温下羰基可与羟基发生可逆反应,生成半缩醛、半缩酮: C=O+HOR ==== C(OR)(OH) 在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮: C(OR)(OH)+HOR ====C(OR)2 此反应可用于羰基的保护与α-氢羟醛在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮.这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation).通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链. 羟醛缩合反应历程,以乙醛为例说明如下:第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子). 第三步,烷氧负离子与水作用得到羟醛和OH. 稀酸也能使醛生成羟醛,但反应历程不同.酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛. 生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛. 凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水.这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定. 除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛.羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链. 具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物.一般需要在比较特殊的条件下进行反应.例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低.如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%.二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮. 在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合.如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值.一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应.并且产物种类减少,可以主要得到一种缩合产物,产率也较高.反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留.在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物.芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应.在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合.另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应. 卤代烃基上的反应由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮. 这类反应可以被酸或碱催化.用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物. 决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关. 生成的一卤代物继续与卤素反应的速度降低.这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行.所以酸催化卤代反应常停止在一卤代产物上. 碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关. 用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段.这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因. 凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物.而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐.因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction).由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮.因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应. 如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应. 因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇.《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇. 甲基酮的卤仿反应是制备羧酸的一个途径.另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸. 羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应.与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心.一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性.因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应.一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上.所以,羰基的典型反应是亲核加成反应. 加成与氢氰酸(1)与氢氰酸的加成醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇). 羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一.羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体.例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸. 丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯.甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃. 醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行.为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇. 与格氏试剂(2)与格氏试剂的加成在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似.由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇. 格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇.但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物.另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃.在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离.有机锂化合物和醛、酮反应的方式和与格氏试剂相似.例如和醛、酮反应,则分别得到仲醇或叔醇.与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主.由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应.一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败. 与醇 (3)与醇的加成常温下羰基可逆反应,与羟基发生可生成半缩醛、半缩酮: C=O+HOR ==== C(OR)(OH) 在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮: C(OR)(OH)+HOR ====C(OR)2 此反应可用于羰基的保护然后知道了这些反应,自己找到适合自己的试剂和方法就可以去除了. 有什么不会的再问吧 原文链接://shuzhiren.com/post/60822.html

相关文章

N,N-二甲基乙酰胺的介绍

N,N-二甲基乙酰胺是一种化学物质,分子式是C4H9NO。...

顺酐与二异丙醇胺反应,N,N-二甲基乙酰胺为溶剂,为什么在冰浴条件下??(nn二甲基乙酰胺)

1、二甲基乙酰胺的二甲基乙酰胺详细介绍二甲基乙酰胺对多种树脂,尤其是聚氨酯树脂、聚酰亚胺树脂具有良好的溶解能力,主要用于耐热合成纤维、塑料薄膜、涂料、医药、丙烯腈纺丝的溶剂。目前国外多用于生产聚酰亚胺...

N,N-二甲基乙酰胺中的N指的是什么???求详细解答。。。

指氮原子。取代基连在碳上时用序号表示(如2-甲基丙烷),连在其他原子上则直接用原子本身的符号命名。乙酰胺为CH3CONH2,N,N-二甲基就表示两个甲基取代在氮上,所以结构为CH3CON(CH3)2。...

无水乙醇,苯甲醇和N,N-二甲基乙酰胺他们分别在水中的溶解度是多少?哪个最高哪个最低?

无水乙醇跟N,N-二甲基乙酰胺与水任意比例互溶,苯甲醇能溶于水,20℃时溶解度为3.8%。...

二甲基乙酰胺的二甲基乙酰胺详细介绍

化学名称:N,N-二甲基乙酰胺二甲基乙酰胺是一种强极性非质子化溶剂,能溶解多种化合物,与水、醚、酮、酯等完全互溶,具有热稳定性高、不易水解、腐蚀性低、毒性小等特点,对多种树脂,尤其是聚氨酯树脂、聚酰亚...

allzhweb
2023-12-06 09:32:14

我不会~~~但还是要微笑~~~:)

allzhweb
2023-12-06 09:32:14

肯定互溶,二甲基甲酰胺是万能溶剂,二氯甲烷是有机溶剂。

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。