logistic回归是分类模型还是回归模型(回归模型)

小数2023-10-23产业问答138

1、解释回归模型,回归方程,估计回归方程的含义

回归模型是对统计关系进行定量描述的一种数学模型。回归方程是对变量之间统计关系进行定量描述的一种数学表达式。指具有相关的随机变量和固定变量之间关系的方程。主要有回归直线方程。当几个变量有多重共线性时,多元回归分析得出的回归方程,靠手算精确值计算量太大,所以只能得出估计值。另一个或一组变量(自变量)的回归关系的数学表达式。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a、b,从而得到回归直线方程。使用回归分析的好处良多。具体如下:它表明自变量和因变量之间的显著关系。它表明多个自变量对一个因变量的影响强度。回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。

2、回归模型的一般形式

展开全部多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n 其中 k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regression coefficient).上式也被称为总体回归函数的随机表达式.它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+。

3、线性回归模型和非线性回归模型的区别是什么

线性回归模型和非线性回归模型的区别是:线性就是每个变量的指数都是1,而非线性就是至少有一个变量的指数不是1。通过指数来进行判断即可。线性回归模型,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。线性回归模型是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。非线性回归,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

4、什么是混合回归模型

混合回归模型是假设所有的解释变量对被解释变量的边际影响与个体无关。不好编辑,直接上图。

5、简单线性回归模型的每一构成项各有什么含义

展开全部一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:Y=b0+b1x1+…+bkxk+e其中,b0为常数项,b1,b2…bk为回归系数,b1为X1,X2…Xk固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为X1,X2…Xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y=b0 +b1x1 +b2x2 +e建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之彰应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为解此方程可求得b0,b1,b2的数值。

6、如何分析回归模型的拟合度和显著性

模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显著性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显著性水平下显著,小于0.01就可以说在99%的显著性水平下显著了。如果没有给出系数表,是看不到显著性如何的。回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。拓展资料:回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。(资料来源:百度百科:回归模型)

7、proportional odds ordered logistic regression model怎么翻译?是什么logistic回归模型

proportional odds ordered logistic regression model(比例优势命令逻辑回归模型)logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,logistic模型是非线性模型。比如说我们曾经做过的土地利用评价,就分别用多元线性回归模型和Logistic模型进行试验。影响耕地的因素假设有高程、土壤类型、当地人口数量和GDP总量,把上述四种因素作为自变量,某块地是否为耕地的概率为P,即应变量。然后根据已经有的样本数据,求出logistic模型的系数,一般用最大似然法结合牛顿—拉斐逊法解系数,求出F(P)=G(高程,土壤,人口,GDP)的一个回归函数,即Logistic模型,然后把全地区的数据代入上式,求出每个地方是否为耕地的概率,用来对土地利用的评价提供科学的依据。

8、样本回归模型与总体回归模型有何区别

区别在于总体回归模型比样本回归模型更能精确地反映事物的本质特征,样本回归的误差大。 总体回归模型和样本回归模型都是对随机社会现象的描述,但是总体回归模型是基于研究对象总体数据而进行的回归描述,他对经济现象的解释和说明比较准确

9、回归模型的矩阵形式怎么写?

可以如图写出这两个回归函数的矩阵形式。如果没有截距,就不用写出矩阵第一列的1。

10、logistic回归是分类模型还是回归模型

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回... 原文链接://shuzhiren.com/post/49685.html
标签: 回归模型

相关文章

回归模型的一般形式

回归模型的一般形式...

解释回归模型,回归方程,估计回归方程的含义

解释回归模型,回归方程,估计回归方程的含义...

如何分析回归模型的拟合度和显著性

如何分析回归模型的拟合度和显著性...

样本回归模型与总体回归模型有何区别

样本回归模型与总体回归模型有何区别...

回归模型的矩阵形式怎么写?

回归模型的矩阵形式怎么写?...

proportional odds ordered logistic regression model怎么翻译?是什么logistic回归模型

proportional odds ordered logistic regression model怎么翻译?是什么logistic回归模型...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。