什么是数学建模(数学模型)

allzhweb2023-10-23产业问答131

1、一,什么是数学模型

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。数学模型所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。

2、是什么数学模型

模型 ①所研究的系统、过程、事物或概念的一种表达形式。   模型可以是物理实体,也可以是某种图形或者是一种数学表达式。   用这种方法处理可以大大减少实验工作量,还有助于了解过程的实质。   有的化工过程如反应过程是化学反应与传递过程(物理过程)相互影响的过程,而化学反应与物理过程往往不可能同时满足化学相似和物理相似的条件。   因此传统的因次论、相似论方法不再适用,这时可用模型法进行研究。   ②根据实验、图样放大或缩小而制作的样品,一般用于展览或实验。   ③铸造机器零件等用的模子。 数学模型 是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。 一、建立数学模型的要求:   1、真实完整。   1)真实的、系统的、完整的,形象的映客观现象;   2)必须具有代表性;   3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;   4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。   2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。   3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

3、数学模型有什么用

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。 静态和动态模型 静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。 分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。 连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。 随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。 参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。 线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

4、数学模型是用来描述一个生态系统或它的性质的数学形式,种群增长的数学模型有曲线图和数学方程式,下列关

A、“J”型增长曲线的数学方程式模型可表示为:t年后种群数量为:Nt=N0λt(第二年的数量为第一年的λ倍),A正确;B、“J”型增长曲线的条件是理想的情况,即食物和空间充裕、气候适宜、没有敌害等,B正确;C、“J”型增长曲线中出生率远大于死亡率,C正确;D、“J”型增长是理想的条件下发生的,增长率不变,但增长速率越来越大,所以没有K值,且每年新增加的个体数越来越多,D错误.故选:D.

5、数学模型有哪些

模型分类按应用领域分类:生物学数学模型医学数学模型地质学数学模型气象学数学模型经济学数学模型社会学数学模型物理学数学模型化学数学模型天文学数学模型工程学数学模型管理学数学模型按是否考虑随机因素分类:确定性模型随机性模型按是否考虑模型的变化分类:静态模型动态模型按应用离散方法或连续方法分类:离散模型连续模型按建立模型的数学方法分类:几何模型微分方程模型图论模型规划论模型马氏链模型按人们对事物发展过程的了解程度分类:白箱模型:指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。灰箱模型:指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。黑箱模型:指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

6、数学模型,急急急……

1.符号说明: x1(t)——食饵在t时刻的数量; x2(t)——捕食者在t时刻的数量; r1——食饵独立生存时的增长率; r2——捕食者独自存在时的死亡率; λ1——捕食者掠取食饵的能力; λ2——食饵对捕食者的供养能力. e—捕获能力系数 2.基本假设: (1)食饵由于捕食者的存在使增长率降低,假设降低的程度与捕食者数量成正比; (2)捕食者由于食饵为它提供食物的作用使其死亡率降低或使之增长,假定增长 的程度与食饵数量成正比。 3.模型建立与求解 不考虑人工捕获 dx1/dt=x1(r1-λ1x2) dx2/dt=x2(-r2+λ2x1)

7、怎么建立数学模型

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 下面给出建模的—般步骤: 模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术. 模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等. 模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意. 模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。 应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.

8、什么是数学模型,什么又是物理模型,还有什么样的模型,怎么区别?

数学模型就是数学教学中用到的模型,或者解决数学问题时可以抽象成的模型。比如一座圆锥形的铁塔我们就可以抽象成数学模型——圆锥。 以此类推物理化学生物等等。都是可以的。 先说这些,不懂再问。

9、线性系统的数学模型

描述控制系统输入、输出变量以及内部各变量之间关系的数学表达式,称为系统的数学模型。常用的数学模型有微分方程、差分方程、传递函数、脉冲传递函数和状态空间表达式等。 系统数学模型的建立,一般采用解析法或实验法。解析法是依据系统各变量之间所遵循的基本定律,列写出变量间的数学表达式,从而建立系统的数学模型。

10、什么是数学建模

从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 原文链接://shuzhiren.com/post/49680.html
标签: 数学模型

相关文章

什么是数学模型,什么又是物理模型,还有什么样的模型,怎么区别?

什么是数学模型,什么又是物理模型,还有什么样的模型,怎么区别?...

什么是数学建模

什么是数学建模...

数学模型有什么用

数学模型有什么用...

一,什么是数学模型

一,什么是数学模型...

数学模型,急急急……

数学模型,急急急……...

数学模型有哪些

数学模型有哪些...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。